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REFLECTION OF A SHOCK WAVE FROM THE FREE SURFACE OF AN ELASTOPLASTIC BODY 

V. A. Baskakov and A. V. Bobryashov UDC 539.3:534~i 

The present article examines a model of a macroscopically isotropic ideal elastoplas- 
tic body with small trains within the framework of the classical dynamic theory of 
plasticity. The behavior of the body is described by the Prandtl-Reuss equations~ the von 
Mises plasticity condition, and the associated flow law [i]. 

Our goal is to theoretically study a two-dimensional model problem concerning the 
propagation and reflection of a shock wave of finite length from a free boundary. The time 
of impact (contact time) is considered to be finite in regard to the generation of the 
wave. This time reaches -i0 -6 sec for a broad range of metals, so that the length of the 
wave may be several millimeters - in which case it must be taken into account. Here, we 
will examine weak shock waves, the pressure at the front being of the order of 1 GPa. The 
waves do not produce phase changes in the substance. 

Thus, we will be examining questions relating to a single local reflection of loading 
and unloading waves - a case corresponding to the actual shock loading of a body. Problems 
that were similarly formulated and were solved by similar approaches were addressed in [2- 
5]. 

Shock-wave profiles in metals have been well studied both theoretically and experi- 
mentally [6, 7] and constitute an elastic precursor which is followed by a slower-moving 
plastic front. The shock wave splits in two, with the formation of a two-front wave 
configuration. Here, in actual physical processes involving high-speed impact, the 
amplitude (intensity) of the shock wave initially rapidly increases. It then decreases 
monotonically to zero - which corresponds to unloading. This circumstance makes it very 
difficult to construct the unloading wave [8]. As a result, we will henceforth assume that 
unloading occurs in the form of a certain stepped wave which moves with the speed of the 
precursor. 

Since the stresses and displacement rates change sign in the unloading wave (to ten- 
sion), we can say that the front of this wave, having "caught up with" the front of the 
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plastic wave, "reduces" the stresses and displacement rates to their values in the elastic 
precursor. We will henceforth examine the propagation of an isolated wave of constant 

pressure. The left corner of Fig. i shows an idealized profile of the shock wave that we 
will be examining. 

i. Let (several microseconds after impact) a wave of constant pressure and finite 
duration T be propagated through a body. The intensity of the shear stresses in the wave 

I~ : ( i / 2 ) S i j S i s  <~ k 2 ( l . i )  

(Sij is the stress deviator; k is the yield point of the material). Encountering a free 
surface at a certain angle ~o, the wave is reflected from it back into the body. Figure i 
shows the geometric pattern of the reflection of loading wave OA and unloading wave OiA i 
forming the shock wave. The problem permits the simplest class of similarity solutions, 

with a similarity index equal to unity. Proceeding on the basis of well-known results of 
analysis of the propagation of elastic waves, we postulate the existence of two reflected 

shock waves at the point O: like-named wave OB and shear wave OC (with the reflection of 

OA). On the same basis, we also postulate the existence of two reflected shock waves at 

point Oi: OiB i and OiC i (with the reflection of OiAi). The latter two waves have steps of 
the same form and are needed to satisfy the boundary conditions on the surface. The inci- 
dent wave OA, of specified intensity ~ = const, propagates in the undeformed medium (zone 
I) with the velocity cZp = (~ + 2#)/p. For plane-strain conditions in the loading region 

(zones 3 and 4), Baskakov [9] obtained a similarity solution to the dynamical equations of 

an ideal elastoplastic body in a coordinate system xiOy i moving at the velocity c = cp(sin 
~)-i The solution was obtained with boundary conditions in stresses on the free surface 

and with allowance for discontinuities of the stresses and displacement rates in the waves 

OA, OB, and OC [9]. Here, it was assumed that a constant stress state satisfying condition 

(i.i) existed in zone 2. 
Also presented in [9] was a careful numerical-analytical analysis of possible cases 

of elastic or plastic deformation of zones 3 and 4. The author determined the intensities 

of all of the waves, the dimensions of the plastic fans (hatched in Fig. I) and the 
velocities of the waves bounding these fans as a function of ~ and v (v is Poisson's 

ratio). Thus, the stresses, plastic strains, and displacement rates become known at each 

point of the wave OiA i on the side of the loading region. The region below OiA i is broken 
up by reflected waves into characteristic zones 5-10. It will henceforth be convenient to 
conduct our investigation in moving axes x and y connected with the point O. 

Since the reflected waves OB and OC are always located between two neutral or elastic 
loading regions, then we can assume that their velocities and intensities are constant. 
This cannot be said of the waves bounding the plastic fans or of the wave OiA i, by virtue of 

the nonuniformity of the plastic-strain distribution in the body ahead of the wave. We 
will assume that the intensity ~* of wave OiA i is different at each point of its front and 
that it depends on the plastic strains e..P ahead of the wave. Such a dependence was 

ij 

presented in [i0] in standard notation for a plane unloading wave: 

8f~*/6t (~/pcp) "p eiju (i.2) 

608 



N 
04 03 Ioe o, o 

N_ ( 
/ \ 

Fig. 2 

Replacing 5-differentiation and partial differentiation with respect to time by differenti- 

ation with respect to y, we obtain 

Y 

0 

where integration is performed along the straight line OIA I (kly = -(x + S)); ~0 is the 
constant of integration, determined from the condition that at point B (in zone 5)Q_~=--Q.; 

B =  - - T - S ;  - - - - S  : 
2k 1 -S/@ z 

{9 ~,  o ~ 1 /  2-----T~ ~o=-k .c /P~vc -cP ;  s (de~/@)Uv~,,j@--9-. ( 2 . 4 )  
0 

Here, S = 10011 = cT; k I = ~ - CmZ/C P = cot {; pZ = 2(1 - v)/(l - 2w). It follows in par- 
ticular from (1.3) that at point 01 

0~ = 0 o .  ( 1 . 5 )  

The coordinates x0, Y0 of the point of intersection of the wave OIA I and any ray a = 
~0(a e [0; ~]), passing through the origin are calculated from the formulas 

x o ---- - - S  sin q) cos czo/sin (ao -~- q)), 

Yo = - - S  sin q) sin % / s i n  (o~ o q- r 
( 1 . 6 )  

Inserting (1.6) into (1.3), we find the intensity of the unloading wave at the given point, 

The intensities of the waves OIB 1 and OIC I are constant and are determined from the boundary 

conditions on the free surface at point 01 . The intensities of the waves BB 2 and CC 2 are 

also constant for each value of (9, v), are known, and are equal respectively to the inten- 
sities OB and OC obtained from the elastoplastic solution in the loading zone. The same 

applies to the wave OIA I at the points of intersection with OB and OC. These conclusions 
are easily substantiated by using Eqs. (1.7)-(1.8) at points B and C (also see [ii]). 

The following conditions are satisfied for waves OIB , OiBl, and BB 2 

[ v i ]  = covl, - -  cv[~rij] = ~(~8i] q- 2~vivj). (1.7) 

For waves OIC I and CCz, we have the relations 

[vib~ = O, [ ~ j ]  = - - V ~ ( [ ~ i l v j  -F [ v j b h  ( 1 . 8 )  

(~ is the intensity of the corresponding wave; ~• are components of a unit normal to the 
wave; the brackets denote discontinuities of the stresses and displacement rates). In 

particular, W%B = ~*(X, y). Knowing the stresses and the rates ahead of the waves 01B and 
BB 2 (still in zone 5), we can use (1.7)-(1.8) to determine them directly behind the fronts 

of these waves. Also, we know a12 and o22 on the free surface O104 . 
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Thus, we need to construct the complete solution of the problem within the unloading 
zone O401BB 2 if we know the stresses and the displacement rates at its boundary (see Fig. 
i). With this in mind, we applied the method of characteristics to the equations of 
elasticity theory (henceforth written in the moving variables x and y) 

~ i j , j - - P V i  = O, gij  = ~valkSii + ~ ( v i d  + vi,i), ( 1 . 9 )  

these equations forming a hyperbolic system in the unloading region. It should be noted 
that the terms -2#eij P are absent from the second group of Eqs. (1.9), since we are assuming 
that the residual plastic strains in the unloading region eijP = const (otherwise, the cal- 
culations are made slightly more complicated). We also drop the equation which determines 

G33 �9 

We have five families of characteristics: 

dg = O, dg/dx = -+-a = ! tg  (Ps, dy/dx  = + b  = _ tg  r (i. I0) 

Here, a~ = #(pc 2 - #)-i; b z = (A + 2#)(pc 2 - (A + 2#))-i; ~s = arcsin (sin Q/p); ~s is the an- 
gle of inclination of the reflected shear shock wave to the free surface. The relations 
along the characteristics have the form 

( c / ~ ) ( ( / -  2 ) %  - p ~ o ~ )  + 4 ( i  - pZ)v~ = ]~(y), 

(c/,a)(a22 + a(M 2 - -  i ) a n )  + (M ~ - -  2)vl ~- (a(M 2 - -  1) + 

+ a-1)v~ =/2(x + y/a), 
(c/~t)(%2 - -  a(M 2 - -  i)a!2) -~ (M ~ - -  2)vl - -  (a(M 2 - -  1) + 

+ a-1)v~ = ].~(x - -  g/a),  

(c/~)(%~ - -  b(~12) - -  2vl �9 b(a -~ - -  l)u2 = ]~(x + y /b) ,  

(c/p.)(%2 @ b(~n) - 2v I - -  b(a -2 - -  t)v~ = ]a(x - -  g/b),  

( / - -  2 ) ( a n  + ~:2) - -  2(P 2 - -  1)e33 = ]6(Y). 

H e r e ,  M z = c i / C s  z i s  t h e  M a t h  n u m b e r ;  Cs2 = # / p ;  p2 = c e a / C s  2 >_ 2(pZ = M Z s i n 2 ~ ) .  The  l a s t  
r e l a t i o n  o f  ( 1 . 1 1 )  w a s  o b t a i n e d  d i r e c t l y  f r o m  t h e  t h i r d ,  f i f t h ,  a n d  s i x  e q u a t i o n s  o f  s y s t e m  
( 1 . 9 ) .  T h u s ,  a l l  o f  t h e  f u n c t i o n s  f i  a r e  k n o w n  o n  t h e  b o u n d a r y  OzB a n d  BB z o n  t h e  s i d e  o f  
t h e  u n l o a d i n g  r e g i o n .  

S o l v i n g  s y s t e m  ( 1 . 1 1 )  f o r  a i j  a n d  v i ,  we f i n d  t h e  s t r e s s e s  a n d  t h e  d i s p l a c e m e n t  r a t e s  
a t  e a c h  p o i n t  w i t h i n  r e g i o n s  6 a n d  10 f r o m  t h e  f o r m u l a s  

(1.ii) 
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2p2M~(c/~Oa~ -=- ( p ~ M  ~ ~-, 2 ( p  ~ - -  M ~ ) ) ( f a  + ]~) - -  

- -  2p~(f~ + f~) - -  2M~f~,  

2M~(c/~t)o~ ---- (1 - -  a~')a-~(f~ - -  ]3) - -  (( M~ - -  l )  a~ + l )b -~( f~  - -  f~), 

2M~(c /v )o~  = 2(]~ - F / a )  q-  (M ~" - -  2)( /a  -[- f~); 

2(p z - -  t ) % ~  = (p~ - -  2) (0  n + %z) �9 ]~, 

2M2v~ := a~((fz -- f~)a -1 t"  (M ~ -- t ) ( /~  -- f~)b-~). 

(1.12) 

However, these quantities are unknown in zones 7-9, since we do not know the function f5 in 

any of them and we do not know the function f3 in zone 8. To determine them, by using the 

boundary conditions alz = a22 = 0 on O10 ~ we obtain 

[2~ ((M ~ - ~) ~ + l )  - (M ~ - ~) ~ (l  - ~ ) ]  & - 4 ~  ( i  - ~ )  & 

5(M ~ - -  2) (~ - -  ~ )  + 2~ ((M ~' - -  ~) ~ + ~) 

2f3 = (2 - -  M~) ( f4  q-  fS) - -  2]2.  
(i.13) 

Inserting (1.13) into (i.12), we find aij and v i in these zones (we recall thac f3 in zones 

7 and 9 is determined from (i.ii) rather than (1.13)). 

Let us examine zone 8. It follows from (1.12)-(1.13) that ai2 = a22 = 0 everywhere in 
this zone. At the same time, v i and v 2 are nontrivial both on the free boundary and inside 

zone 8. We should especially point out the region O403C3C i. All fi except fi and f6 are 
constant within this region, so that v I = const and v 2 = const. This means that the given 

region moves translationally with a velocity equal to the vector sum of the velocities v I 

and v 2. This may result in microscopic cracking of the material or a local change in the 

profile of the free surface near the point 03. Here, the position of the point 03 is deter- 

mined by the relation I OiO 3] = (b - a)S/2a. Depending on the stress-strain state of the me- 

dium near the wave OIB on the loading side, other zones of constant stress and displacement 

rate in addition to that described above may be formed in the unloading region. For exam- 

ple, it can be concluded on the basis of the results in [9] that the stresses and displace- 

ment rates within zones 4, 7, 8, and i0 are constant near point O i but change suddenly with 

the transition from zone to zone. It should also be noted that direct substitution of st- 

resses (1.12) into (i.I) makes it possible to show whether the medium is deformed elasti- 

cally or plastically at a given point of the loading zone. The plastic state will probably 

signify that a transition has occurred from one point of the plasticity surface to another 
through elastic unloading. 

Now let us find the intensity of the waves 01B i and OiC i at point O i. We will do this 

by using Eqs. (1.7) and (1.8). As a result, we can express ~i~ and v i in zones 7, 8, and i0 

through the known quantities aij(4), vi (4) in zone 4. However, these relations also include 

the unknowns ~o~, [v.] ~ ~, which characterize the sought intensities. To find them, we use 
~ �9 O•177 

the boundary condition on the free surface at the point O i aij(8)n3(8) = 0(n~ (s5 is an inner 

normal to the free surface) to obtain 

_(8) ,  (7),.(75 n ! 8 ) )  pv(7)v(S)[vi]o~c~ = ( p 2  2)(~Q0 + O o ~ . x )  ( - j  ~ j  v i  - -  - -  

~,~. [ (4) (8) (4) . (4)~ (7) , ( 4 )~ (8 ) ,  (7)'~ ~ {~ (10) ~(8)~ (10) 
-- Zh~ 0 (V~ n~  V i - -  v h v h v j  '~.i v i  I -- Z ( O o 1 B  1 k v h  ~ v i  - -  

. (105. (7) (10) (8) (7)~ ((y(4)n(s)w(7)v(7) (a) (s)'~ (i, 1,2); - - ~ h  ~h v i  n j  v i  j T p c s ~ t - ~  ~l t h i - - o i i n j  ) ] =  

(I.14) 

~ A = - -  ~o 
(~(4)n(S)n(S)__~(a).(s)v(7)n(8),,(7)~ 

(p2__2)[t_2[.(s)v(7)~2|~.2n(S)~,(lO)(n(S)~,(lo) 9~,(10)~,(7)~,(7)n(8) ~ ' 
l V~  h ) J ~  k " ~  k i - i  - - ~ - i  - i  -~ j J 

where 9.,(a).(s) ( . (4 ) . (0  9 (a) (7) (7) (8) (p '  - 2 ) [1  - 2 ( 4 7 ) 4 8 ) y ]  + - -h  ,.h nj ) 

= (p2 - -  2) [ i  - -  2(vi75n(S))2 ] • ')-(8)v (10) [~(8)~V(10) (10).  (7) . . (7)r t (8)~ " 
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This completes the solution of the given problem. Here, the zone affected by unload- 

ing wave OIB can be considered the semi-infinite layer 04OIBB3, of thickness h = (I/2)Sb 

(Fig. I), rather than the entire region 0401BB 2 (which was examined above). 
2. In the case of a symmetric pattern of local reflection of a spherical (or cylin- 

drical) shock wave from a free surface (plane) (Fig. 2), zones O3C3B5 and O~C3B , moving 
translationally, may result in cleavage of the "triangular cup" 03C30 ~ as seen in experi- 

ments. The occurrence of cleavage failure depends on many factors: the thickness of the 
plate, the initial pressure pulse, the strain rate, the cleavage stress (tensile strength) 

of the material. The cleavage stress in turn depends on the conditions of the experiment 
[12], the angle ~, the nonuniformity of the medium, etc. With the approach being taken 

here, it can be assumed that cleavage failure at the free surface occurs as a result of the 

superposition of two solutions on the symmetry axis NN (by virtue of the use of linear 

equations from the theory of elasticity in the unloading region). Here, we easily 
determine the dimensions of the cleaved "block:" its radius is equal to (b - a)S/4a, while 

its depth is equal to (b - a)S/4. The cleavage time reckoned from the moment when the 
unloading wave first comes in contact with the free surface is equal to t, = (b - a)T/4a, 

i.e., it is commensurate with the duration of the shock wave. 
3. As an illustration of the material discussed in Sec. i, we will present a 

detailed calculation of the stress-strain state of the medium in the unloading region. We 

will examine the reflection of a limiting shock wave corresponding to the sign of the 
equality in (i.i). The initial regime entails plastic deformation of the specimen in zone 
3 and elastic deformation in zone 4 (see Fig. i). This situation corresponds to certain 

values of v and ~. The angle nOm was small in all of the calculations, not exceeding 3 ~ 

Here, ~ ~ ~. In accordance with [9], let ~ = 0.3, ~ = 21o20 , = 0.373, ~ = 0.372, ~2 = 

0.306. In the coordinate system x~Oy~, the dimensionless stresses ~ij = ~ 4~k)-~ and the 
displacement rates 9 i = ((X + 2#)p/2k2)~/2vi are as follows at the points of intersection of 
the rays a~ and ~2 and the unloading wave O~B in zone 3 and on the wave itself in zone 4: 

-('~) 0 , 3 2 ,  ~ )  o,o~, :(~ o,~o, ~ ) -  1,o9, o~ 0 1 2  ~ -  . ,  - - -  = -  

~ ? )  = - o , ~ ,  ~ i  ~) = 1 , ~ ;  

~ )  = 0 , 6 0 ,  5~32 ) = - -  0 , 3 6 ,  o_~2-(3) = _ 0 , 5 9 ,  o.~ 3:('~) = - -  0 , 19 ,  

~(~) = - -  0 , 4 2 ,  v[ 3) = 1 ,68 ;  

~(~) 0,4t ,  -(4) 0,13, 7.(~) 0 , t2 ,  :(4) 0 , t 9 ,  = -  O ' l g  ~ -  u 2 2  = -  0 3 3  ~ -  

[ ;14 )=  0 , 0 3 ,  ~ 1 4 ) =  t , 9 3 .  

(3.1) 

(3.2) 

(3.3) 

The initial data is transformed as follows in coordinate system xOy rotated through 
the angle ~ (this system having been used for all of the calculations in Sec. I) 

o~ = ni~zn.~l~r162 ~, v l  = nl~T"~, ~ = (3.4) 

where n11 = cos ~; n12 = sin ~; n21 = -sin ~; n22 = cos qo. The same applies to the compo- 
nents of the plastic strain tensor. Let ~* = -~*, ~0 = -~o" We divide (1.3) by (-~). 
Accordingly, we obtain the following for the three sections of wave OIB , specifically: I) 

Oln , where ~..P = const P = (2#/42k)eij P) 2) nm, where eij 1 j  (eij , -- P changes; 3) mB where eij P = 

0 

Y 

--. -- ~,. . 2Cp ] /2k  ~ dy -5 0o, O* 
~1  = ~')o, -~2 = p 2 x ~ s i n 2 c p  2~ ,~ . . . .  a = t ;  

y(%) 
y(%) 

2Cp V~k 
f ~  

dy + I. 

(3.5) 

(3.6) 

Here, to make the calculations easier to perform we adopted the following approximation on 
~..P section nm: ~o = In(y/y(~1))uiu o. This approximation is consistent with the results obtai- 

ned in [9]. Also presented in [9] was an expression for the intensity of the wave OA: ~2 = 

(3/4)(kZ/pZ)p2cs 3. After integration in (3.5)-(3.6), we have 
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_ ,  V T  ~ 7__(%)x(%)_-~+~; 
~2 = ~- p2 ~ 2  q~ x (%) 7~ (3.7) 

Here, ~ = xS-l(y = yS -~) is 

mula of (1.6) with a o = a l ,  
2 ( a z )  a n d  ~ ( a 2 ) .  

C o n d i t i o n s  ( 1 . 7 )  a r e  
are written as 

Q-0 = ~ f 3  7~ ( % ) - 7 :  (%) p-~ ~a7 c-~s~ 7 p + 1. (3 .8)  

c a l c u l a t e d  f r o m  ( 1 . 6 ) .  T h u s ,  ~ ( a ~ )  i s  f o u n d  f r o m  t h e  f i r s t  f o r -  
etc. In ( 3 . 7 ) ,  the values of ~ lie within the interval between 

satisfied on wave O~B. In dimensionless form, these conditions 

I <  = Q1,2,a ((P~ - -  2) 50 + 2v~v~); ( 3 .9  ) 

[v~ = - -  =2 V - 2  p ~q,2,av~' vi (sin ~, cos ~). ( 3 .10> 

Thus, on wave OIB in zones 6 and i0 

5o :o(~,~) ~ 3 ~,  " ~  = "~1 + T l /  5 ~q,2,a ~P~ + 2 sin 2 qo), 

= 022 + =2- 7 Q1,2,3 sin 2% 

- = 22 + T F ~ - ~ t . 2 , a ( ( P 2 - - 2 ) + 2 c ~  ~ ) ,  

o]a :o(a,~> t 1/--3- 5* =Uaa + ~ [ - Z - - L . e , a  (p2 - -  2), ( 3 . 1 1 )  

2 V ~ P-ZQ,z,a sin % u ~ = 7.0<a,a) __ _ ~" 2 V ~ -  P ~1,2,a cos % 

Here ~ 0(a.4) 9i0(3,4) , lj , are known from (3.1)-(3.4). The discontinuity was determined as [A] = 

A (s,l~ - A (s,4). Conditions (1.7) are also satisfied on wave BB2, but its intensity wBB2 = WOB 

--$i~, where $i = 3 cos 2 2~o - 1 = 0.66 [9], u I = sin ~, u 2 = -cos ~. Since 5i3~ = vi~ = 

0, then [9i3~ ] = ~ o(6) [9i 0] = 9 0(6) Thus in zone 6 on wave BB 2 i3 ' ' " , 

O101-- = ~-~ V # ~  ~ ( ( p ~ -  2) + 2 s i n  ~ c~), a~ = - ~ ] / # ~  ~1~ sin 2% 

- o  ~ - ~ ~7~ (p~ - 2),  

U~ 2 V g  p g * s m q ) ' v  ~  

We find the functions f~ (i = i, 2 ..... 6) on wave O~B on the side of zones 6 and I0 (fi = 

(#/4-~kc)f~ (i = 1 ..... 5), f6 = (i/q~/k)fs), having made use of (I.ii) and (3.11)" 

((p2 _ 2) 5~ - -  pZ-~~ + (4 ( l - -  p2)/p~) sin ep ~o  = / 1 ,  

($2~ + a (M ~ -  t)0~ + ((M 2 - -  2)sin (9/p 2) -~o + ( (a  (M 2 - -  

- -  1) + a -1 )  sin f # P D  7~ = :/~, 

( ~ h  - ~ ( m  - t )  ~ )  + ( ( m  - 2) s i~  ~/p~)  b~ - 

- ( (~  ( m  - 1) + c ~) ~in ~ / / )  ~o = h ,  

( ~ o  __ b~O2) __ (2 sin q~/p2) -~ o 1 + ( b ( a - ~  - -  i )  sin ~/p~) v~ = / 4 ,  

(5~ + bo~ - -  (2 sin qo/p 2) v ~ - -  (b  ( a - '  - -  1)  sin cp/p 2) u ~ = 7~, 

(3.13) 
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If we insert (3.12) instead of (3.11) into (3.13), we obtain fi on the wave BB 2 on the side 
of zone 6. Solving system (3.13) for the stresses and displacement rates, we find their 

values at each point within zones 6 and I0: 

-(~ p2-. M2 ~ ~ ~r, 

- t - -  a 2 I - ~  ( M  2 - -  1 )  a 2 

?.0 - - ( ? , -  %), 

i - M = - 2  

- p2--2 [(],t + ]5 ) -  t ( pZ )]  
O~ 2p 2 (1) 2 -  1) ]1 + ( p 2  2-----~ f' , 
- i 

[< /] b 

(3.14) 

If we take (3.14) and insert f5 from (3.13) rather than (1.13), then the desired values be- 
come known in zones 7 and 9 as well. If we also determine f3 from (1.13), then the sought 
values of (3.14) are also determined in zone 8. Here, we note that in (1.13) fi = fi (i = 
2 ..... 5). Numerical calculations were performed on an ES-1060 computer for zones 6, 7, 8, 
9, and I0 (in all, we computed 1332 variants of boundary conditions for fi). Computing 
time was 114 sec. 

Figures 3 and 4 show some of the results that were obtained: graphs of the change in 

9i3~ and ~i ~ through the thickness of the layer 04OiBB 3 (which is approximately one-fifth of 
S) in the sections x = const, corresponding to points O 1 (Fig. 3), 02, 03, and 04 (Fig. 4). 
Other sections of the graph are similar. The section xol = const was graphed in a small 
neighborhood of the point O i to its left. 

All of the curves are satisfactorily approximated by broken lines. The darker lines 
in Fig. 4 represent the sought values in the section Xo2 = const, while the lighter lines- 
represent the same in the section Xo3 = const. The vertical dashed curves determine the 
positions of the shock waves OICi, OIBI, CC 2 in the corresponding sections. The stresses 
and displacement rate undergo discontinuities in these sections, their values being indi- 
cated in the figures. Figures 3 and 4 also show the graph of the change in the intensity 
of the shear stresses iz ~ = 12 k-2. It should be noted that inequality (I.i) is written in 
dimensionless form as 12~ = SijSi3 ~ I. After performing the appropriate transformations, we 

obtain 

I --0 -0 --0 -0 --0 -0 -0 2 I 
70 = 2 - (oi,o2  + + o22o  ) + o. < v 

The graphs clearly indicate the loading-zone points at which the material is deformed elas- 

tically (i 2 < 1/2), and plastically (i2 o > 1/2). In the sections Xo2 = const, Xo3 = const, 
and Xo4 = const, the stress 933 ~ is approximately equal to zero and is not shown on the 
graphs. In the section Xo4 = const and to the left, the stresses ~i2 ~ and ~2z ~ are ev- 
erywhere equal to zero, while 91~ and V2 ~ are constant and equal to their values in the 
section x% on the free surface. The stress ~ repeats the broken line in the section Xo3 = 
const to the point of discontinuity, but the line is subsequently continuous (this is 
shown by the fine dashed line in Fig. 4). The value of i2 o changes continuously in this 

section from i2 o = 0.002 at point 04 to iz ~ = 0.02 at point (Xo4; -bS/2). For ff~i , it follows 
that both tension (~n ~ > 0) and compression (91i ~ < 0) occur at such surface points. Thus, 
the material is compressed in the neighborhood of point O1, but with depth it is trans- 
formed to the tensile state (as with increasing distance from the point 01 to the left of 
the x axis). It is also apparent from an analysis of Figs. 3 and 4 that shear can take 
place along the line O3C 3 (see Fig. I), since the values of Vl ~ and 92 ~ are different on both 

sides of O3C 3. 
Thus, the region of compression of the material up to the yield point (and above) 

between shock waves OA and OiA i (loading zone) is replaced by a region of "attenuation" of 
compression or a tensile region after the waves' reflection from the free surface. Large 
92z ~ and 9z ~ under the surface may lead to its normal fracture (microcrack formation) near 
point 01 or to cleavage when the technical cohesive strength of the material o22 ~ = oct is 
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exceeded. If we assume that ~cr - k = 3 GPa (aluminum), then cleavage can take place in our 
problem. 
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